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Abstract

We indicate how successive approximations to the solution of equations

of the form

ac ad ac ]
Poll e;;(f(z) a) ~ [g(z)c]

can be derived. The resulting theory is applied to accurate solutions to
equations arising in pore gradient electrophoresis and to ultracentrifugation
with pressure effects. The second approximation decreases errors by at least
259, over the first approximation, and leads to substantial improvement in
the application to the Lamm equation that describes ultracentrifugation.

INTRODUCTION

We have recently reported on an approximate method for the solution
of equations that commonly arise in the analysis of biochemical separa-
tion systems (1). Although the original application was made to pressure
dependence on velocity sedimentation experiments, (2-4), subsequent
applications have been made to equations arising from pore gradient
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electrophoresis (5) and GPC with a varying gel density (6). In view of
the many potential uses of such approximations in the analysis of
chemical separation systems, it is of some interest to indicate how to
obtain corrections to the original approximation. It is the purpose of this
paper to derive the first correction term to the original approximation,
and to indicate how higher order correction terms can be derived.

Many equations deseribing chemical separation systems can be
reduced to the dimensionless form

o_.2 (f(x) g;) - 2 Lwe (1)

ar ‘ 5
where 8(zx, ) is the concentration of a single substance, « is the distance,
r the time, and e is a parameter proportional to the diffusion constant.
The term g(x) is the transport term, and f(x) expresses the spatial
dependence of the diffusion coefficient. It is generally assumed that
boundary effects can be neglected, so that Eq. (1) is to be solved subject
to an initial condition 8(x,0). The systems in which we will be interested
are characterized by a diffusion effect small compared to the transport
force. More precisely, we assume that ¢ << 1 while f(z) and g(z) are of
the order of 1 for relevant values of z. For example, in ultracentrifugation
the parameters 7, z, and e are defined by

T = 2w, xr = 7'2/7'.;2, €= 2D/(30w27'a2) (2)

where { is time, @ the angular velocity, sy the reference sedimentation
coefficient, r, the radial position of the meniscus, and D the diffusion
constant. The parameter e for velocity sedimentation experiments on
typical protein molecules is generally less than 5 X 107%. When pressure
has a significant effect on sedimentation, but diffusion is unaffected by
pressure, f(z) = z is a term due to the cylindrical geometry, and
g(z) = z(1 +m — mzx) is a typical representation of the effect of
pressure on sedimentation (7). For ultracentrifuges in current use, z
varies from 1 to approximately 1.5, and no value of m greater than 0.95
has been found, (&, 9). A similar set of parameters can be defined for pore
gradient electrophoresis with values of e equal to 5 X 1072 or less (6).

A common method for the solution to Eq. (1) is to set e = 0 and to
solve the resulting first-order equation by the method of characteristics
(10). While this method is sufficiently good for most single solute
experiments, broadening of the concentration profile due to diffusion ecan
be important when many substances are to be separated, as is commonly



14: 27 25 January 2011

Downl oaded At:

LINEAR CHEMICAL SEPARATION EQUATIONS 587

the case in chromatography. The remainder of this paper is devoted to a
systematic perturbation development of the solution to Eq. (1) valid
for small e.

MATHEMATICAL DEVELOPMENT

Let us begin by assuming an initial condition 6(z,0) = é(z — ),
where §(x) is a delta function corresponding to a pulse injection at
t = 0 at position xo. Then, if ¢ = 0, the solution to Eq. (1) corresponds
to a modulated pulse traveling down the column, where the position at
time ¢ is the solution to the equation

* du
[ ®

The initial condition 6(x,0) = U(x — 1), where U(y) is a step function
defined by
U(y) =0 y<0

=1 y>0 (4)

leads to a solution with a traveling discontinuity located at the value
of z specified by Eq. (3). Since small e implies a slight broadening of the
peak either in concentration or concentration gradient, it is plausible
that we should be interested in the behavior of 8(¢,7) for small | ¢ | where
¢ is a running coordinate defined by

* du
§'=/;0;(-u')‘—‘r (5)

For later use we define the solution of this equation for z in terms of ¢
to be
z=H( +7) (6)

8o that in the absence of diffusion the position of a peak initially at
z =0willbez, = H(r).

Since we will be interested in small | { |, it is clearly desireable to
transform the space variable z in Eq. (1) to { using Eqgs. (5) and (6).
Furthermore it is convenient but not necessary to treat the two cases
corresponding to the two initial conditions 6(z,0) = §(z) and ¢(z,0) =
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Uz — 1) in slightly different ways. Let us first consider the pulse
initial condition 6(z,0) = é§(z). For this case we define functions F (u)
and G(u) by

F(u) = fTHwW)], Gu) =g[H(w)] (7
and we define a new independent variable ¢ (z,7) by
y(z,7) = g(z)8(z7) (8)

When the transformation of z to ¢ and 8 to ¢ is made, the transport
equation can be written

Y s a—g + eB(sm) + € (5,r)v (9)

where

A@r) =F(E+ )/ +1)

04 A oG
B(¢r) = % Gor
d /A 3G

Cltr) = — 5}(5 5) (10)

Equation (9) is to be solved subjeet to the initial condition

¥(£,0) = G(§)e[H () ] (1)

The equation corresponding to the initial condition 8(2,0) = U(z — 1)
is most conveniently handled by defining a new dependent variable

\ﬁ(x,r) b

G(¢)

G+ )¢(§:7) (12)

o(z,r) =
in which, now, ¢ (z,0) satisfies the initial condition

¥(§,0) = ULH(¢) — 1] (13)

Notice that the factor G(¢)/G(¢ + r) is just the modulating factor in
the solution to the transport equation in the absence of diffusion. Thus
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the solution to the diffusion free (¢ = 0) equation can be written

G(¢)
Gt + 1)

where { is to be expressed in terms of 2 to return to original variables.
When the transformation to y is made by means of Eq. (5), and the
space variable is transformed to {, then an equation for ¥ is obtained
exactly in the form of Eq. (9), except that the functions A ({,7), B(¢,7),
and C({,7r) are now given in terms of the function S(¢,7) =
G(§) /G + 7) by

A(Gr) =F(E +1)/G@ (¢ + 1)

8(z,7) = ULH(¢ + 7) — 1] (14)

. FS§
B({,T) =Agg‘_ln7
1 0 /Fa38

C(m) =@5}(5§> (15)

Since the equations for ¢ for both initial conditions are formally the
same, the analysis to follow can be applied to both problems.

Up to this point the analysis has been exact and no approximations
have been made. In order to derive a systematic perturbation solution to
Eq. (9), we use the terminology of singular perturbation theory (11) to
assume the existence of a “stretched” coordinate which will be denoted
by p and defined by

p=1{/¢le) (16)
and an expansion of ¥ in the form

V(&) = dlpe(e), 7] -+ h(e)aloo(e), 7] + ha(e)¥elpp(e), 7]+ - -

(17)
where ¢(e), hi(e), ha(e), ..., are arbitrary functions at our disposal
with the properties

. . . hn+l(€)
lim ¢(e) = 0, lim hn(e) = 0, lim ——— =0 (18)
>0 €« >0 h" (G)

The intuitive idea behind the ealeulations is that p is a coordinate that
will remain of the order of 1 as e — 0, and that a series of successive
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approximations can be derived in which the . at each order satisfy an
equation that involves only ¥, ¥4, . . . , ¥» and no higher order terms and
in which all coefficients are of order equal to one. We will assume further,
that the ¥, ({,7) satisfy the initial conditions

¢0(§70) = ‘P(?;O)) ‘pl({ro) = V/Z((:O) =-.. =0 (19)

Although the o(e), hi(€), ha(e), . . ., are arbitrary, we shall see that there
is a natural way to choose them.

For the purpose of the calculation we require the assumption that
A(u), B(u), and C(u) are analytic functions of u, i.e., that expansions
of the form

oA 2024
AGn =AW +55| dpgal e @)
are valid. If we now substitute Egs. (7) and (20) into Eq. (9), we find
o 2 2
'5';+hl(€) 6—r+h2(e) 5:4-
e 94 [ople) T 24 ]
-5 [407 4000 B 00 + PRI 0 4

Y a2
X [6_p2 =+ ha(e) o0t + ]

€ B
+ ;’(5 [B(O)T) + Pﬂa(f) a_g_— (O:T) + - ':I

X[ap+h1(e)ap+ ]

e [C(o,r> + o0 5 (00 + ] [ + ha(ea + +++] (21)

Since the first term on the left, dyo/dr, has no associated factor of e,
we require the same of the lowest order term on the right-hand side.
This can be achieved by setting ¢(¢) = +/e. A consideration of the next
higher order term shows that k;(¢) = 4/, and it is then easy to see
that h,(e) should be 2

The hierarchy of equations that results from these caleulations
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then reads
%‘”TB = A(r) %"
W4 % = pd(r) % + B(O”)'aa_to
WA ‘2—2? = p4'(r) % +Eao) %
a_B_;gg) % + B(0) %";1 + 00, (22)

since A({,7) = A(¢ + ) from Eq. (15). All of these equations take
the form '

£ M
3 A(r) o V(er) (23)

where the V (p,7) are calculated from lower order terms of the hierarchy,
and can therefore be considered to be known. The first of these equations
is

5 =AM 5 (24)

or, defining a new dimensionless time, A(7), by

at = " A(u) du (25)
0
1t becomes
Bbe _ P (26)
dA dp?

The solutions to this equation for the two initial conditions of interest
are

0(x,0) = 8(z): Yo(x,7) = [4meA(r) ] exp <_ 4e:(r))

(27a)
8(2,0) = U(x — 1) yo(x,r) = &{¢/[2A(r) ]} (27b)
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where ®(z) is the error function defined by

z

B(z) = (2m)17 / exp (—u2/2) du.

-0

Expressions for 60(z,7) appropriate for the two initial conditions are
obtained by inserting the appropriate values of { in terms of 2, and by
multiplying, in the first case by 1/g(z), and in the second by
G /G + 7).

We next turn our attention to the solution of the equations for ¢ (z,7),
where n > 1, Le., equations for which V(p,7) # 0 in Eq. (23). If we
define Fourier transforms I'(w,A) and W (w,A) by

P(o,8) = [ $(nd) exp (ivp) do

—c0

W) = [ V(o) exp (iwp) dp (28)
then the Fourier transformation of Eq. (23) yields
o -
P + A(r)e T = W (29)
.

Since I'(w,0) = Ty(w,0) = +-- = 0 from Eq. (19), we can express the
solution to Eq. (29) as

Twr) = /"' W (wu) exp { —?[A{r) — A(w)]} du (30)

Applying the inverse transform and interchanging the orders of integra-
tion, we find

1 o
Vo) = 5 /_ T(e,8) exp (—ivp) do

i /T du '[m exp { —twp — W [A(7) — A(w) I W (w,u) dw

= 27 J, o
(31)
But the integral over w is the Fourier transformation of a product (12)
and can therefore be written as a convolution integral, leading to a
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final result

1 /’ du
(4m)12 )y [A(r) — Au) ]2

¥(p,7) =

(p —v)?
4{A(r) — A(w)]

X f_: V(v,u) exp [— ] dv (32)

DETAILED EVALUATIONS OF THE FIRST CORRECTION

In this section we calculate in detail the expressions for ¢, (p,7). Let us
first consider the initial pulse condition, for which yo(p,7) is given by the
expression in Eq. (27a). In this case one finds that V(p,r) can be ex-
pressed as

1 . o?
Vier) = WEPJ(T) — pK(7)]exp (— 4eA(7)) (33)
in which
_AM
10 = fmcs K0 = 5o 6 +BONT (4)

When this expression is substituted into Eq. (22) we can evaluate the v
integral in closed form, the integrals needed for the evaluation being:

/_w vep [" 4:(27) - 4[A<(:>:v)Az(u>J] @
= o (59) " tanta) - a T e (- £25)

f_ v exp [‘ 43(1) T ((:> _—”)Az(uﬂ] a

(A N ” ~ AW
- (A(7)> {4x[A(r) — A(u) ]} [GP[A(T) Aw)] + 5 e )]

p2
X exp (—- m) (35)
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The final expression for the first correction term /ef1(p,r) is:

exp {—[p2/4A(T)]}{ 3p
(16m)12 4A52(7)

V(o) = [ #wiae - awdu

LA Y p "rar
+ g [ 4 @a0 du— s [ ) + BOwId)

(36)

for the initial pulse concentration.
Analogous calculations can be made for the unit step input funetion
for which the initial approximation is shown in Eq. (27b). The expression

for V(p,r) is, in this case,
1 p*A’ (7) o’
T 20 ~ s o (- am) O

and the final expression is found, after some manipulation, to be

Vier) =

Veb(oyr) = / "B(0) du+1 — A(r)

s T
[4rA(r) 17

sl [aoraen(- i)

Values of y¥.(p,r) can be calculated from Eq. (22); the resulting
expression will consist of sums of terms of the form

p*M (1) exp (— 4Ap(r)>'

However, for the purpose of assessing the usefulness of higher order
correction terms, we will confine ourselves to comparing the approximate
values of 6,(z,7) and fy(2,7) + V/ebi(x,7) with more accurate numerical
evaluations of the solutions to Eq. (1).

COMPARISON BETWEEN APPROXIMATE AND EXACT SOLUTIONS

Our first example is taken from the theory of pore gradient electroph-
oresis (13, 5). The transport equation can be written

a6 9 o9 d
—=e—(e*—)— — (e % 39
or ¢ oz (e 6z> a9z (e=b) (39)
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and the variable { is easily shown to be
(=e—7—1 (40)

so that H(u) = In (u + 1). Consequently the functions A (r), B(0,7)
and A(r), needed for the expression in Eq. (36), are

A(r) =1+, B(0,r) =2, A(r) =7+ 7%/2 (41)

The resulting integrals are elementary and the final expression for

'\/e\bl(pﬁ') iS
_ 1 3pr* (1 7 P T
‘\/6\01(9;") = (16,",)1/2 {A5/2(T> (2 + 3) + 4A7/2<-r) 1+ 3)
3pr [
- Aa/z(,.)} exXp <_ 4A(‘r)> (42)

with A(7) as shown in Eq. (41). The exact solution has been given by
Weiss and Rodbard (5) as

1 1 1 1-1/¢
") = o e+ 1)“4(02 + 1)1 — 1)

1 1 z
X exp [—((v DS (1 + te )] (43)
€ T
where M = (2/7) exp (2/2).
In Fig. 1 we have plotted the relative errors defined in terms of the
exact and approximate concentration profiles, 0ex (z,7) and 8app(z,7) by

R = 1 bt (6app/6ex) (44)

for the following set of parameters: M, = free mobility = 5 X 105
em?/sec/V; Dy = free diffusion constant = 1 X 10~® cm?/sec; V =
voltage gradient = 10 V/em; L = column length = 10 cm.

The value of € can be calculated in terms of these parameters as

e = Do/(MVL) = 2 X 107* (45)

and the value of r corresponding to 1 hr in real time is 0.18. The solid
curves in Fig. 1 give the relative error corresponding to the approxima-
tion of concentration by 6(x,r). The abscissa of these curves is plotted
so that the point z = 0 corresponds to the peak, and z = 30.035
corresponds roughly to the concentration equal to 0.01 or less of the
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Fi1c. 1. Relative errors for uncorrected and corrected approximations as a
function of dimensionless space coordinates z, for pore gradient electroph-
oresis, for e = 2 X 10~*and ¢t = 5 and 10.

peak maximum. The dashed curves give the relative error corresponding
to the choice of 8app = 80 + /€61 Although it is not evident from the
curves, this second approximation yields a relative error that is very
nearly a constant fraction of the relative error for the first approximation.
The fraction involved is roughly 0.47 at ¢ = 5 hr, 0.64 at { = 10 hr, and
0.77 at ¢ = 20 hr. Similar results have been obtained for other parameter
sets.

As a second example we consider results for the ultracentrifuge, in
which pressure effects are important (7). For this model, using the
parameters defined in Eq. (2), we have

f@) =z, ¢(@) =z(1+m—mz) (46)

where m is a parameter proportional to compressibility that deseribes
the effects of pressure. We have used the program deseribed by Dishon,
Weiss, and Yphantis (74) to generate accurate solutions to the Lamm
equation with pressure effects, and with the initial condition 8(z,0) =
U(z — 1). Numerical caleulations were made for m = 0.3, € =
2.4461 X 1073, and = = 0.2 and 0.3. In Fig. 2a we have plotted curves
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of the relative error as defined in Eq. (44) to approximate the concen-
tration using 6, (denoted by Ro) and 6, + +/¢8; (denoted by R;). The
relevant formulas required for numerical evaluation of Eq. (38) can be
written in terms of the quantity a(r) = exp [(1 + m)r] as

1 B |
A('r) = m [1 - ; + 3m(m + 1)1'
2y — M ot —
+ 3m¥(a — 1) + 5 ( 1)]
T _ m m2(m + 5)
/0 BOwW) du = o 1)3[ 5 (@=1)

+2mE—m)(a—1)+ (5 —Tm)(m + 1)r

(i)

ma + 1\?
A = (m + 1)
T 1 m8
-/; A(u)A’(u) du = A(T)A(T) - m I:Z' (a‘ — 1)

+ 2mi(ad — 1) + %m‘(az —1) + 20md(a — 1)

+ 16m*(m + 1)r + bm (¢ —1) + L (a® — 1)]
a 202

(47)

Figure 2a shows curves of Ry and R, at r = 0.3 as a function of a
distance 2z, where z = 0 is defined to be the position of the discontinuity
in a diffusion free (¢ = 0) theory. The dotted curve represents the
concentration profile. As can be seen from the curves the approximation
generated by R, is considerably more accurate than R, except in the
leading and trailing edges of the concentration profile. The absolute
error remains small throughout the profile; large values of | R | in the
trailing edge are magnified by the small denominator fex, and the errors
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at the leading edge are very small for either approximation. Another way
of looking at this data is shown in Fig. 2b where we have plotted the
ratio R/ R, for » = 0.2 and 0.3. The patterns of both curves are roughly
similar indicating a considerable gain in the use of the corrected approxi-
mation from roughly 2z = —G.1 to +0.15 em.

In summary, we have presented a second approximation in the singular
perturbation theory of chemical separation equations, with a systematic
procedure for generating higher approximations. Whether such correc-
tions to the first approximation are required depends on the experimental
accuracy of measuring concentration profiles. Most present experiments
are adequately described by the first approximation, that is, experi-
mental errors exceed the magnitude of mathematical errors. However,
the recent interest in, and development of, new analytic procedures
(15) indicates that there are and will be situations in which the higher
corrections are important.
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