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A brtract 

We indicate how successive approximations to the solution of equations 
of the form 

can be derived. The resulting theory is applied to accurate solutions to 
equations arising in pore gradient electrophoresis and to ultracentrifugation 
with pressure effects. The second approximation decreases errors by at least 
25% over the first approximation, and leads to substantial improvement in 
the application to the Lamm equation that describes ultracentrifugation. 

INTRODUCTION 

We have recently reported on an approximate method for the solution 
of equations that commonly arise in the analysis of biochemical separa- 
tion systems (1). Although the original application was made to pressure 
dependence on velocity sedimentation experiments, (2-41, subsequent 
applications have been made to equations arising from pore, gradient 

sas 
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586 WElSS AND DISHON 

electrophoresis ( 5 )  and GPC with a varying gel density (6). In view of 
the many potential uses of such approximations in the analysis of 
chemical separation systems, i t  is of some interest, to indicate how to 
obtain corrections to the original approximation. I t  is the purpose of this 
paper to derive the first correction term to the original approximation, 
and to indicate how higher order correction terms can be derived. 

Many equations describing chemical separation systems can be 
reduced to the dimensionless form 

where O(x, r )  is the concentration of a single substance, x is the distance, 
T the time, and E is a parameter proportional to the diffusion constant. 
The term g ( x )  is the transport term, and f(x) expresses the spatial 
dependence of the diffusion coefficient. I t  is generally assumed that 
boundary effects can be neglected, so that Eq. (1) is to be solved subject 
to an initial condition 6(x ,O) .  The systems in which we will be interested 
are characterized by a diffusion effect small compared to the transport 
force. More precisely, we assume that e << 1 while f(z) and g(z) are of 
the order of 1 for relevant values of x. For example, in ultracentrifugation 
the parameters r ,  x, and E are defined by 

= 2~2sOt, x = r2/ra2, E = 2D/(s0w2ra2) 

where t is time, w the angular velocity, so the reference sedimentation 
coefficient, ro the radial position of the meniscus, and D the diffusion 
constant. The parameter e for velocity sedimentation experiments on 
typical prptein molecules is generally less than 5 X lop3. When pressure 
has a significant effect on sedimentation, but diffusion is unaffected by 
pressure, f(x) = x is a term due to the cylindrical geometry, and 
g(z) = z(1 + m - mz) is a typical representation of the effect of 
pressure on sedimentation (7). For ultracentrifuges in current use, z 
varies from 1 to approximately 1.5, and no value of m greater than 0.95 
has been found, (8,9). A similar set of parameters can be defined for pore 
gradient electrophoresis with values of E equal to 5 X 

A common method for the solution to Eq. (1) is to set e = 0 and to 
solve the resulting first-order equation by the method of characteristics 
(10). While this method is sufficiently good for most single solute 
experiments, broadening of the concentration profile due to diffusion can 
be important when many substances are to be separated, as is commonly 

or less ( 6 ) .  
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LINEAR CHEMICAL SEPARATION EQUATIONS 587 

the case in chromatography. The remainder of this paper is devoted to a 
systematic perturbation development of the solution to Eq. (1) valid 
for small e. 

MATHEMATICAL DEVELOPMENT 

Let us begin by assuming an initial condition O(x,O) = S(x - ZO), 

where 6(x) is a delta function corresponding to a pulse injection a t  
t = 0 at  position 2 0 .  Then, if e = 0, the solution to Eq. ( 1 )  corresponds 
to a modulated pulse traveling down the column, where the position a t  
time t is the solution to the equation 

The initial condition e(x,O) = V ( x  - l ) ,  where U(y) is a step function 
defined by 

U(y) = 0 y < o  
= 1  y > o  (4) 

leads to a solution with a traveling discontinuity located at the value 
of x specified by Eq. (3) .  Since small e implies a slight broadening of the 
peak either in concentration or concentration gradient, it is plausible 
that we should be interested in the behavior of O({,r) for small I { I where 
t is a running coordinate defined by 

For later use we define the solution of this equation for x in terms of { 
to be 

2 = H(T + 7 )  ( 6 )  

so that in the absence of diffusion the position of a peak initially a t  
x = Owillbex+ = H ( T ) .  

Since we will be interested in small I { 1, it is clearly desireable to 
transform the space variable x in Eq. (1) to { using Eqs. (5) and ( 6 ) .  
Furthermore i t  is convenient but not necessary to treat the two cases 
corresponding to the two initial conditions O(s,O) = 6(x) and O(x,O) = 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
2
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



588 WEISS AND DISHON 

U ( z  - 1) in slightly different ways. Let us first consider the pulse 
initial condition e(z,O) = 6(z). For this case we define functions F ( u )  
and G ( u )  by 

F ( u )  = f[H(u)I, G(u) =: d H ( u ) l  ( 7 )  

and we define a new independent variable #(x,r) by 

+(z,~)  = g(z)e(z,T) (8) 

When the transformation of x to { and e to 9 is made, the transport 
equation can be written 

where 

aA A a G  
B ( { , 7 )  = - - - - 

aC G a{ 

C([,7) = - - -- a~ a (AaG> G a!: 
Equation (9) is to be solved subject to the initial condition 

*(T,O) = G(3-)6CH(P)I (11) 

The equation corresponding to the initial condition e(z,O) = U ( z  - 1) 
is most conveniently handled by defining a new dependent variable 
*(ZIT) by 

in which, now, +(x,O) satisfies the initial condition 

*(C,O) = UCH(f) - 11 (13) 

Notice that the factor G(C)/G(r + T )  is just the modulating factor in 
the solution to the transport equation in the absence of diffusion. Thus 
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LINEAR CHEMICAL SEPARATION EQUATIONS 589 

the solution to the diffusion free (e  = 0) equation can be written 

where { is to be expressed in terms of x to return to original variables. 
When the transformation to $ is made by means of Eq. (5), and the 
space variable is transformed to {, then an equation for $t is obtained 
exactly in the form of Eq. (9) ,  except that the functions A ( { , T ) ,  B ( { , r ) ,  
and C ( { , T )  are now given in terms of the function S({ ,T )  = 

G ( t ) / G ( l +  7 )  by 

A(t ,T)  = F(t + 7)/G2({ + 7 )  

a F S ~  
af G 

B ( { , T )  = A - In - 

C({,T) = -- -- S G ~ {  a ~ a t  
Since the equations for + for both initial conditions are formally the 
same, the analysis to follow can be applied to both problems. 

Up to this point the analysis has been exact and no approximations 
have been made. In  order to derive a systematic perturbation solution to 
Eq. (9),  we use the terminology of singular perturbation theory (11) to 
assume the existence of a “stretched” coordinate which will be denoted 
by p and defined by 

P = f/cp(e) (16) 

and an expansion of + in the form 

+ ( l , T )  = *oCPcp(e), .I + hl(e)*lCPcp(e), 71 + h z ( E ) * z C P d e ) ,  71 + - * -  

(17) 

where cp(e), h l ( e ) ,  hz (e) , . . . , are arbitrary functions at  our disposal 
with the properties 

hn+l ( e l  lirn cp(e) = 0, lim hn(e) = 0, lim - = 0 (18) 

The intuitive idea behind the calculations is that p is a coordinate that 
will remain of the order of 1 as e -+ 0, and that a series of successive 

f -0 t-0 e-o hn(E) 
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590 WEISS AND DISHON 

approximations can be derived in which the I),, at  each order satisfy an 
equation that involves only J.0, +I, . . . , I),, and no higher order terms and 
in which all coefficients are of order equal to one. We will assume further, 
that the I),,(f,r) satisfy the initial conditions 

I)O(T,O) = I)(T,O),  I ) l ( l , O )  = I)Zz(T,O) = ... = 0 (19) 

Although the cp(e) , hl (e) , hz (r) , . . . , are arbitrary, we shall see that there 
is a natural way to choose them. 

For the purpose of the calculation we require the assumption that 
A ( u ) ,  B ( u ) ,  and C(u)  are analytic functions of u, i.e., that expansions 
of the form 

are valid. If we now substitute Eqs. (7) and (20) into Eq. (9) ,  we find 

Since the first term on the left, aI)o/ar, has no associated factor of c, 
we require the same of the lowest order term on the right-hand side. 
This can be achieved by setting cp(e) = l / e .  A consideration of the next 
higher order term shows that hl(e) = V'E, and i t  is then easy to see 
that h,(e) should be en/2. 

The hierarchy of equations that, results from these calculations 
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LINEAR CHEMICAL SEPARATION EQUATIONS 59 1 

then reads 

8% W O  aJ .0  A ( T )  __ = ~ A ’ ( T )  - + B(0,r) - aJ.1 
ar a P 2  dP2 a P  

A ( T )  ~ = ~ A ’ ( T )  - + - A ” ( T )  - a J . 2  

aT aP2 a p 2  2 aP2 

- _  

a% 8% P2 a v o  -- 

since A (l, T )  = A (l + T )  from Eq. (15). All of these equations take 
the form 

aJ. av - - A ( T )  - = V ( ~ , T )  
aT aP2 

where the V ( ~ , T )  are calculated from lower order terms of the hierarchy, 
and can therefore be considered to be known. The first of these equations 
is 

aJ .0  a v o  
a7 - = A(T)  ap2 

or, defining a new dimensionless time, A ( 7 )  , by 

A(T) = l ‘ A ( u )  du 

i t  becomes 

The solutions to this equation for the two initial conditions of interest 
are 

J .o(q~)  = [4mA(~)]-~/*exp - - ( 4&> 
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592 WEISS AND DISHON 

where @(x) is the error function defined by 

@(x) = (27r)-'I2 exp ( - u 2 / 2 )  du. I:, 
Expressions for O o ( q 7 )  appropriate for the two initial conditions are 
obtained by inserting the appropriate values of { in terms of x, and by 
multiplying, in the first case by l /g(x),  and in the second by 
G ( S ) / G ( l +  7 ) -  

We next turn our attention to the solution of the equations for #,(x,T), 
where n > 1, i.e., equations for which V ( ~ , T )  # 0 in Eq. (23). If we 
define Fourier transforms r ( w , A )  and W ( w , A )  by 

then the Fourier transformation of Eq. (23) yields 

ar 
- + A ( 7 ) w T  = w aT (29) 

Since r l ( w , O )  = r 2 ( w , O )  = .- .  = 0 from Eq. (19), we can express the 
solution to Eq. (29) as 

r ( w , 7 )  = W(w,u) exp ( - -w2[A(~)  - A ( u ) ] )  du (30)  

Applying the inverse transform and interchanging t,he orders of integra- 
tion, we find 

# ( p , 7 )  = 
bl I I'(w,A) exp ( - i w p )  dw 

27r -m 

1 
27r 

= - l ' d u  [: exp f - i w p  - u2[A(7) - A(u)] )W(w,u)  dw 

(31) 

But the integral over w is the Fourier transformation of a product (12 )  
and can therefore be written as a convolution integral, leading to a 
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LINEAR CHEMICAL SEPARATION EQUATIONS 593 

final result 

00 (' - ')' ] dv (32) 1, v(v'u) [ - 4[A(7) - A(u)] 

DETAILED EVALUATIONS OF THE FIRST CORRECTION 

In  this section we calculate in detail the expressions for ( l ~ ( p , ~ ) .  Let us 
first consider the initial pulse condition, for which ( l o ( p , ~ )  is given by the 
expression in Eq. (27a). In this case one finds that V(p,r)  can be ex- 
pressed as 

in which 

When this expression is substituted into Eq. (22) we can evaluate the v 
integral in closed form, the integrals needed for the evaluation being: 

(4~[A(7) - A ( ~ ) ] ) ~ / ~ e x p  
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594 WElSS AND DISHON 

The final expression for the first correction term ~ E + ~ ( P , T )  is: 

(36)  
for the initial pulse concentration. 

Analogous calculations can be made for the unit step input function 
for which the initial approximation is shown in Eq. (27b). The expression 
for V ( P , T )  is, in this case, 

and the final expression is found, after some manipulation, to be 

A(u)A’(u) du} exp (- L) (38) 
4A(T) 

Values of q n ( p , 7 )  can be calculated from Eq. (22); the resulting 
expression will consist of sums of terms of the form 

However, for the purpose of assessing the usefulness of higher order 
correction terms, we will confine ourselves to comparing the approximate 
values of O o ( x , T )  and O o ( x , T )  + Z/e01(x,7) with more accurate numerical 
evaluations of the solutions to Eq. (1). 

COMPARISON BETWEEN APPROXIMATE AND EXACT SOLUTIONS 

Our first example is taken from the theory of pore gradient elect,roph- 
oresis (13 ,5 ) .  The transport equation can be written 
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LINEAR CHEMICAL SEPARATION EQUATIONS 595 

and the variable { is easily shown to be 

{ = e z  - 7  - 1 

so that H ( u )  = In (u + 1). Consequently the functions A ( ? ) ,  B ( 0 , r )  
and A ( 7 )  , needed for the expression in Eq. (36), are 

(40) 

A ( ? )  = 1 + 7 ,  B ( 0 , r )  = 2, A(7)  = 7 + 7'/2 (41) 

The resulting integrals are elementary and the final expression for 
d 4 1 ( P , 7 )  is 

with A(?) as shown in Eq. (41). The exact solution has been given by 
Weiss and Rodbard ( 5 )  as 

( A 2 +  1)'12+- Z (1 + e )  + - +")I (43) 
2 7 

where X = (2 /7 )  exp ( z / 2 ) .  
In Fig. 1 we have plot,ted the relative errors defined in terms of the 

exact and approximate concentration profiles, Be, ( 2 , ~ )  and Bapp ( 2 , ~ )  by 

R = 1 - (e.,,/eex> (44) 

for the following set of parameters: M o  = free mobility = 5 X 
cm2/sec/V; DO = free diffusion constant = 1 X cm2/sec; V = 
voltage gradient = 10 V/cm; L = column length = 10 cm. 

The value of B can be calculated in terms of these parameters as 

= D ~ / ( M ~ v L )  = 2 x 10-4 (45) 

and the value of 7 corresponding to 1 hr in real time is 0.18, The solid 
curves in Fig. 1 give the relative error corresponding to the approxima- 
tion Qf concentration by Oo(z,7). The abscissa of these curves is plotted 
so that the point z = 0 corresponds to the peak, and z = f0.035 
corresponds roughly to the concentration equal to 0.01 or less of the 
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596 WEISS AND DISHON 
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- . O 1  t 
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I 0 .01 .02 .03 .04 
L 

FIG. 1. Relative errors for uncorrected and corrected approximations as a 
function of dimensionless space coordinates z, for pore gradient electroph- 

oresis, for c = 2 x 10-4 and t = 5 and 10. 

peak maximum. The dashed curves give the relative error corresponding 
to the choice of OaPp = Oo + Z/eO1. Although it is not evident from the 
curves, this second approximation yields a relative error that is very 
nearly a constant fraction of the relative error for the first approximation. 
The fraction involved is roughly 0.47 a t  t = 5 hr, 0.64 a t  t = 10 hr, and 
0.77 a t  t = 20 hr. Similar results have been obtained for other parameter 
sets. 

As a second example we consider results for the ultracentrifuge, in 
which pressure effects are important (7). For this model, using the 
parameters defined in Eq. (2), we have 

f(z) = 2, g(z) = z( l  + m - ms) (46) 

where m is a parameter proportional to compressibility that describes 
the effects of pressure. We have used the program described by Dishon, 
Weiss, and Yphantis (14) to generate accurate solutions to the Lamm 
equation with pressure effects, and with the initial condition e(z,o) = 
U ( z  - 1) .  Numerical calculations were made for m = 0.3, e = 
2.4461 X 10-3, and 7 = 0.2 and 0.3. In Fig. 2a we have plotted curves 
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LINEAR CHEMICAL SEPARATION EQUATIONS 597 

of the relative error as defined in Eq. (44) to approximate the concen- 
tration using 8 0  (denoted by Ro) and 80 + l / e &  (denoted by R1). The 
relevant formulas required for numerical evaluation of Eq. (38)  can be 
written in terms of the quantity a(.) = exp [ ( l  + m ) ~ ]  as 

m3 
2 

+ 3mya - 1) + - (a2 - 

i ‘B(0,u)  du = (a2 - 1) 
(m + 1Is 

+ 2m(5 - m ) ( a  - 1) + (5 - 7 m ) ( m  + 1 ) ~  

+ 4 (; - l)] 

lT A(u)A’(u)  du = A ( T ) A ( T )  - $ 3 2 4 - 1 )  
(m + 1 )  

15 
2 

+ 2m5(a3 - 1) + -m4(a2 - 1) + 20ms(a - 1)  

6m 1 + 15m2(m + 1).  + - (a - 1) + - (a2 - 
a 2a2 

(47) 

Figure 2a shows curves of Ro and R1 at  T = 0.3 as a function of a 
distance z, where z = 0 is defined to be the position of the discontinuity 
in a diffusion free ( E  = 0) theory. The dotted curve represents the 
concentration profile. As can be seen from the curves the approximation 
generated by R1 is considerably more accurate than RO except in the 
leading and trailing edges of the concentration profile. The absolute 
error remains small throughout the profile; large values of I R I in the 
trailing edge are magnified by the small denominator ecXp and the errors 
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LINEAR CHEMICAL SEPARATION EQUATIONS 599 

at  the leading edge are very small for either approximation. Another way 
of looking a t  this data is shown in Fig. 2b where we have plotted the 
ratio R1/Ro for r = 0.2 and 0.3. The patterns of both curves are roughly 
similar indicating a considerable gain in the use of the corrected approxi. 
mation from roughly z = -0.1 to +0.15 cm. 

In  summary, we have presented a second approximation in the singular 
perturbation theory of chemical separation equations, with a systematic 
procedure for generating higher approximations. Whether such correc- 
tions to the first approximation are required depends on the experimental 
accuracy of measuring concentration profiles. Most present experiments 
are adequately described by the first approximation, that is, experi- 
mental errors exceed the magnitude of mathematical errors. However, 
the recent interest in, and development of, new analytic procedures 
(15)  indicates that there are and will be situations in which the higher 
corrections are important. 
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